On approximating the b-chromatic number

نویسندگان

  • Sylvie Corteel
  • Mario Valencia-Pabon
  • Juan Carlos Vera
چکیده

We consider the problem of approximating the b-chromatic number of a graph. We show that there is no constant ε > 0 for which this problem can be approximated within a factor of 120/113− ε in polynomial time, unless P = NP. This is the first hardness result for approximating the b-chromatic number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Zero Knowledge and the Chromatic

We present a new technique, inspired by zero-knowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max-3-coloring and max-3-sat, showing that it is hard to approximate the chromatic number within (N), for some > 0. We then apply our technique in conjunction with the probabilistically che...

متن کامل

Zero Knowledge and the

We present a new technique, inspired by zero-knowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max-3-coloring and max-3-sat, showing that it is hard to approximate the chromatic number within (N), for some > 0. We then apply our technique in conjunction with the probabilistically che...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

An improved algorithm for approximating the chromatic number of Gn, p

Answering a question of Krivelevich and Vu [12], we present an algorithm for approximating the chromatic number of random graphs Gn,p within a factor of O( √ np/ ln(np)) in polynomial expected time. The algorithm applies to edge probabilities c0/n ≤ p ≤ 0.99, where c0 > 0 is a certain constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2005